

MOLECULAR DIAGNOSTIC TESTING FOR ACUTE REJECTION IN KIDNEY OR LIVER ALLOGRAFTS

List has been updated

See publications in italicized text

Selected Clinical Literature List

Below is the list of selected literature (organized by organ and test) for the Kidney or Liver CAC discussion. For select tests, there is a paucity of evidence. Therefore, additional searches on manufacturer's websites were conducted to ensure that all relevant information was included. Results from these searches and rationale for exclusion are included in the Appendices.

Transplant Organ: Kidney

AlloMap

- 1. Cheung R, Xu H, Jin X, et al. Validation of a gene expression signature to measure immune quiescence in kidney transplant recipients in the CLIA setting. Biomark Med. 2022 Jun;16(8):647-661.
- 2. Akalin E, Weir MR, Bunnapradist S, et al. Clinical Validation of an Immune Quiescence Gene Expression Signature in Kidney Transplantation. Kidney360. 2021 Sep 28;2(12):1998-2009.

AlloSure

- Bromberg JS, Brennan DC, et. al. Biological Variation of Donor-Derived Cell-Free DNA in Renal Transplant Recipients: Clinical Implications. Journal of Applied Laboratory Medicine (2017, September); 2:02, 1-13.
- Bloom RD, Bromberg JS, Poggio ED, et al.; Circulating Donor-Derived Cell-Free DNA in Blood for Diagnosing Active Rejection in Kidney Transplant Recipients (DART) Study Investigators. Cell-Free DNA and Active Rejection in Kidney Allografts. J Am Soc Nephrol. 2017 Jul;28(7):2221-2232.
- 3. Bu L, Gupta G, Pai A, et al. Clinical outcomes from the Assessing Donor-derived cell-free DNA Monitoring Insights of kidney Allografts with Longitudinal surveillance (ADMIRAL) study. Kidney Int. 2022 Apr;101(4):793-803.
- 4. Jordan SC, Bunnapradist S, Bromberg JS, et al. Donor-derived Cell-free DNA Identifies Antibody-mediated Rejection in Donor Specific Antibody Positive Kidney Transplant Recipients. Transplant Direct. 2018 Aug 20;4(9):e379.

5. Stites E, Kumar D, Olaitan O, et al. High levels of dd-cfDNA identify patients with TCMR 1A and borderline allograft rejection at elevated risk of graft injury. Am J Transplant. 2020 Sep;20(9):2491-2498.

AlloSure and Prospera

1. Melancon JK, Khalil A, Lerman MJ. Donor-Derived Cell Free DNA: Is It All the Same? Kidney360. 2020 Jun 19;1(10):1118-1123.

Prospera

- 1. Sigdel TK, Archila FA, Constantin T, et al. Optimizing Detection of Kidney Transplant Injury by Assessment of Donor-Derived Cell-Free DNA via Massively Multiplex PCR. J Clin Med. 2018 Dec 23;8(1):19.
- 2. Halloran PF, Reeve J, Madill-Thomsen KS, et al.; Trifecta Investigators*. Combining Donorderived Cell-free DNA Fraction and Quantity to Detect Kidney Transplant Rejection Using Molecular Diagnoses and Histology as Confirmation. Transplantation. 2022 Jun 29.

Viracor TRAC

The literature review returned no publications that assessed the clinical validity or utility of Viracor TRAC in kidney transplant recipients.

kSORT

- 1. Roedder S, Sigdel T, Salomonis N, et al. The kSORT assay to detect renal transplant patients at high risk for acute rejection: results of the multicenter AART study. PLoS Med. 2014 Nov 11;11(11):e1001759.
- Crespo E, Roedder S, Sigdel T, et al. Molecular and Functional Noninvasive Immune Monitoring in the ESCAPE Study for Prediction of Subclinical Renal Allograft Rejection. Transplantation. 2017 Jun;101(6):1400-1409.
- 3. Van Loon E, Giral M, Anglicheau D, et al. Diagnostic performance of kSORT, a blood-based mRNA assay for noninvasive detection of rejection after kidney transplantation: A retrospective multicenter cohort study. Am J Transplant. 2021 Feb;21(2):740-750.

TruGraf

- 1. Ang A, Schieve C, Rose S, et al. Avoiding surveillance biopsy: Use of a noninvasive biomarker assay in a real-life scenario. Clin Transplant. 2021 Jan;35(1):e14145.
- Friedewald JJ, Kurian SM, Heilman RL, et al; Clinical Trials in Organ Transplantation 08 (CTOT-08). Development and clinical validity of a novel blood-based molecular biomarker for subclinical acute rejection following kidney transplant. Am J Transplant. 2019 Jan;19(1):98-109.
- 3. First MR, Peddi VR, Mannon R, et al. Investigator Assessment of the Utility of the TruGraf Molecular Diagnostic Test in Clinical Practice. Transplant Proc. 2019 Apr;51(3):729-733.

 Marsh CL, Kurian SM, Rice JC, et al. Application of TruGraf v1: A Novel Molecular Biomarker for Managing Kidney Transplant Recipients with Stable Renal Function. Transplant Proc. 2019 Apr;51(3):722-728.

OmniGraf

 Park S, Guo K, Heilman RL, et al. Combining Blood Gene Expression and Cellfree DNA to Diagnose Subclinical Rejection in Kidney Transplant Recipients. CJASN Oct 2021, 16 (10) 1539-1551.

QSant

- 1. Nolan N, Valdivieso K, Mani R, et al. Clinical and Analytical Validation of a Novel Urine-Based Test for the Detection of Allograft Rejection in Renal Transplant Patients. J Clin Med. 2020 Jul 22;9(8):2325.
- 2. Yang JYC, Sarwal RD, Sigdel TK, et al. A urine score for noninvasive accurate diagnosis and prediction of kidney transplant rejection. Sci Transl Med. 2020 Mar 18;12(535):eaba2501.

Transplant Organ: Liver

TruGraf

- 1. Levitsky J, Kandpal M, Guo K, et al. Donor-derived cell-free DNA levels predict graft injury in liver transplant recipients. Am J Transplant. 2022a Feb;22(2):532-540.
- 2. Levitsky J, Kandpal M, Guo K, et al. Prediction of Liver Transplant Rejection with a Biologically Relevant Gene Expression Signature. Transplantation. 2022b May 1;106(5):1004-1011.
- 3. Levitsky J, Asrani SK, Schiano T, et al; Clinical Trials in Organ Transplantation 14 Consortium. Discovery and validation of a novel blood-based molecular biomarker of rejection following liver transplantation. Am J Transplant. 2020 Aug;20(8):2173-2183.

Viracor TRAC – Liver

The literature review returned no publications that reported the performance of Viracor TRAC in liver transplant recipients.

Appendix A

Organ Kidney

Prospera

Due to the paucity of literature on the use of Prospera in kidney transplant recipients, an additional search of Natera's website was conducted. <u>Natera's Prospera Kidney webpage</u> cites the following additional references:

Rationale for exclusion	Reference
This was an analytical validation	Altug Y, Liang N, Ram R, et al. Analytical
study.	validation of a single-nucleotide polymorphism-
	based donor-derived cell-free DNA assay for
	detecting rejection in kidney transplant patients.
	Transplantation. 2019;103(12):2657-2665.
This study evaluated AlloSure rather	Bloom RD, Bromberg JS, Poggio ED, et al.;
than Prospera.	Circulating Donor-Derived Cell-Free DNA in Blood
	for Diagnosing Active Rejection in Kidney
	Transplant Recipients (DART) Study Investigators.
	Cell-Free DNA and Active Rejection in Kidney
	Allografts. J Am Soc Nephrol. 2017
	Jul;28(7):2221-2232.
This was an analytical validation	Grskovic M, Hiller DJ, Eubank LA, et al. Validation
study for the detection of rejection	of a clinical-grade assay to measure donor-
in heart and kidney recipients that	derived cell-free DNA in solid organ transplant
was conducted using AlloSure	recipients. J Mol Diagn. 2016;18(6):890-902.
rather than Prospera Heart.	
This is a reference for organ	Data from the U.S. Department of Health &
transplant data cited.	Human Services: Health Resources and Services
	Administration. Scientific Registry of Transplant
	Recipients (SRTR): Organ Procurement and
	Transplantation Network (OPTN)/SRTR.
This is a reference for organ	Kidney Disease Statistics for the United States.
transplant data cited.	National Institute of Diabetes and Digestive and
	Kidney Diseases.
	https://www.niddk.nih.gov/health-
	information/health-statistics/kidney-disease.
	Published Dec. 1, 2016.
This is a narrative review.	Stegall MD, Gaston RS, Cosio FG, Matas A.
	Through a glass darkly: seeking clarity in
	preventing late kidney transplant failure. J Am
	Soc Nephrol. 2015 Jan;26(1):20-9.
An evaluation of short-term and	Lamb KE, Lodhi S, Meier-Kriesche HU. Long-term
long-term renal allograft survival in	renal allograft survival in the United States: a
the US. No assay evaluation was	critical reappraisal. Am J Transplant. 2011
included.	Mar;11(3):450-62.

Rationale for exclusion	Reference
This publication is labeled "Research	Bunnapradist S, Homkrailas P, Ahmed E,
Letters".	Fehringer G, Billings PR, Tabriziani H. Using both
	the Fraction and Quantity of Donor-Derived Cell-
	Free DNA to Detect Kidney Allograft Rejection. J
	Am Soc Nephrol. 2021 Oct;32(10):2439-2441.

Viracor TRAC

The literature review returned no publications that reported the performance of Viracor TRAC in kidney transplant recipients. An additional search of Eurofins' website was performed. <u>Eurofins' Viracor TRAC Kidney dd-cfDNA webpage</u> cites the following references:

Rationale for exclusion	Reference
This is an abstract, no full text	Kleiboeker S, Grantham J, Mickey K, Cowden S,
publication was found. In the	Bixler E, Sinha R, Altrich M. Clinical Performance of
Establishment of Reference Range	a Donor-Derived Cell-Free DNA Assay for Detection
section, cutoff values and performance	of Rejection in Kidney Transplant Recipients
indices are displayed.	[abstract]. Am J Transplant. 2020; 20 (suppl 3).
	Clinical Performance of a Donor-Derived Cell-Free
	DNA Assay for Detection of Rejection in Kidney
	Transplant Recipients - ATC Abstracts
	(atcmeetingabstracts.com). Accessed 10/07/22.
This study evaluated AlloSure (not	Bromberg JS, Brennan DC, et. al. Biological
Viracor TRAC).	Variation of Donor-Derived Cell-Free DNA in Renal
	Transplant Recipients: Clinical Implications. Journal
	of Applied Laboratory Medicine (2017,
	September); 2:02, 1-13.
This study is a narrative review. It is	Gielis EM, Ledeganck KJ, De Winter BY, et. al. Cell-
labeled as a "Minireview" and discusses	Free DNA: An Upcoming Biomarker in
dd cf DNA measurement methods and	Transplantation. American Journal of
several observational studies.	Transplantation (2015); 15: 2541-2551.
This study evaluated lung (not kidney)	De Vlaminick I, Martin L, Kertesz M, et. al.
transplant recipients and measured dd	Noninvasive monitoring of infection and rejection
cf DNA by shotgun sequencing. Eurofins	after lung transplantation. Proceedings of the
states that Viracor TRAC Kidney	National Academy of Sciences (2015, October 27);
"analyzes NGS and genome-wide	112:43, 13336-13341.
recipient genotype data to determine	
the percentage of dd cfDNA present",	
which is a different measurement	
method.	

Rationale for exclusion	Reference
This was an analytical validation study	Grskovic M, Hiller DJ, Eubank LA, et. al. Validation
for the detection of rejection in heart	of a Clinical-Grade Assay to Measure Donor-
and kidney recipients and conducted	Derived Cell-Free DNA in Solid Organ Transplant
using AlloSure rather than Viracor TRAC	Recipients. The Journal of Molecular Diagnostics
Heart.	(2016, November); 18:6, 890-902.

kSORT

An additional search of <u>Immuncor's kSORT webpage</u> was conducted. The following additional publications were cited:

Rationale for exclusion	Reference
This is an abstract.	Sarwal, Minnie; Vincenti, Flavio; Schroeder,
	Andrew; Hseish, Szu-Chuan; Liberto, Juliane;
	Towfighi, Parhom; Koh, Crystal; Sigdel, Tara. The
	Results of the PRISM (Prediction of Rejection In
	Sensitized patient blood saMples) Trial with a
	Novel Bioassay. Transplantation: July 2018 -
	Volume 102 - Issue - p S128.
This is an abstract.	Ekberg J, Jespersen B, Skov K, Sarwal M, Sigdel T,
	Hsieh S, Lindner P. A Non-Invasive Blood
	Transcriptional Assay, Ksort, Monitors Alloimmune
	Response in the Sailor Randomized Multicenter
	Trial. Am J Transplant. 2016;16 (suppl 3).

TruGraf

An additional search of <u>Eurofins TruGraf webpage</u> was conducted. The following additional publications were cited:

Rationale for exclusion	Reference
Unclear as to what this this is.	Primary research study by CLINICevAL Solutions,
	LLC, 2019
This was the analytical validation of	First MR, Pierry D, McNulty M, Kurian SM, Rose S,
TruGraf and included in the list above.	Whisenant T, et al. Analytical performance validation of a molecular diagnostic signature in kidney transplant recipients. J Transplant Technol Res 2017;7:176

Rationale for exclusion	Reference
A Local Coverage Determination.	Local Coverage Determination MoIDX: TruGraf Blood Gene Expression Test (DL38039). Effective Date of Reimbursement: 25, November 2019 from cms.gov.

OmniGraf

An additional search of Eurofins' and Immucor's websites was conducted. No additional evidence was found that assessed the use of OmniGraf to detect allograft rejection.

QSant

An additional search of <u>NephroSant's website</u> was conducted. The following publications were cited:

Rationale for exclusion	Reference
The aim of this study was to identify	Watson D, Yang JYC, Sarwal RD, et al. A Novel
biomarkers to develop the Kidney Injury	Multi-Biomarker Assay for Non-Invasive
Test (KIT) in patients who presented	Quantitative Monitoring of Kidney Injury. J Clin
with CKD. It did not assess the clinical	Med. 2019 Apr 12;8(4):499.
validity or utility of QSant.	
The aim of this study was to investigate	Yang JYC, Sarwal RD, Fervenza FC, et al.
the clinical utility of the KIT assay in	Noninvasive Urinary Monitoring of Progression in
detection of IgAN and predicting	IgA Nephropathy. Int J Mol Sci. 2019 Sep
progression of renal damage over time.	10;20(18):4463.
It did not assess the clinical validity or	
utility of QSant.	

Appendix B

Organ Liver

Viracor TRAC

An additional search of the <u>Eurofins Viracor TRAC Liver dd-cfDNA webpage</u> was conducted. The following publications were cited:

Rationale for exclusion	Reference
This study evaluated AlloSure (not	Bromberg JS, Brennan DC, et. al. Biological
Viracor TRAC) in kidney (not liver)	Variation of Donor-Derived Cell-Free DNA in Renal
transplant recipients.	Transplant Recipients: Clinical Implications. Journal
	of Applied Laboratory Medicine (2017,
	September); 2:02, 1-13.
This study is a narrative review. It is	Gielis EM, Ledeganck KJ, De Winter BY, et. al. Cell-
labeled as a "Minireview" and discusses	Free DNA: An Upcoming Biomarker in
dd cf DNA measurement methods and	Transplantation. American Journal of
several observational studies.	Transplantation (2015); 15: 2541-2551.
This study evaluated lung (not liver)	De Vlaminick I, Martin L, Kertesz M, et. al.
transplant recipients and measured dd	Noninvasive monitoring of infection and rejection
cf DNA by shotgun sequencing. Eurofins	after lung transplantation. Proceedings of the
states that Viracor TRAC Liver "is	National Academy of Sciences (2015, October 27);
designed to be a noninvasive liquid	112:43, 13336-13341.
biopsy to monitor the percent of dd-	
cfDNA by next generation sequencing	
(NGS) in the transplant recipient's	
plasma post- transplant.", which is a	
different measurement method.	
This was an analytical validation study	Grskovic M, Hiller DJ, Eubank LA, et. al. Validation
for the detection of rejection in heart	of a Clinical-Grade Assay to Measure Donor-
and kidney (not liver) recipients and	Derived Cell-Free DNA in Solid Organ Transplant
conducted using AlloSure rather than	Recipients. The Journal of Molecular Diagnostics
Viracor TRAC Liver.	(2016, November); 18:6, 890-902.